The Global Thermal Interface Materials (TIMs) Market 2025-2035

0

cover

cover

  • Published: February 2025
  • Pages: 272
  • Tables: 75
  • Figures: 84

 

Effective thermal interface materials are becoming increasingly critical across industries as electronic devices and systems grow smaller, faster, and more power-dense. From electric vehicle power electronics and renewable energy inverters to advanced semiconductors and data center servers, managing thermal interfaces efficiently is essential for optimal performance, device reliability, and system longevity. Companies are facing rising pressure to adopt cutting-edge thermal interface solutions that address growing thermal resistance challenges while balancing thermal conductivity, cost-effectiveness, and environmental sustainability. In response, materials scientists and manufacturers are developing advanced thermal interface materials - including novel phase-change formulations, next-generation composite materials incorporating carbon nanotubes and graphene, thermally conductive ceramics, and liquid metal interfaces. These innovations aim to push the boundaries of thermal conductivity while maintaining critical properties like conformability, reliability, and ease of application. The focus is on developing TIMs that can handle higher heat fluxes, reduce thermal resistance, and maintain performance over extended operating cycles.

The demand for enhanced thermal interface materials is being driven by several key trends: the transition to wide bandgap semiconductors in power electronics, increasing processor densities in computing applications, and the growing adoption of electric vehicles. These applications require TIMs capable of managing higher operating temperatures while providing consistent performance under challenging environmental conditions. As devices continue to evolve, thermal interface materials play an increasingly vital role in enabling next-generation electronics and power systems.

The thermal interface materials (TIM) market demonstrates robust growth driven by increasing demands across multiple sectors including electronics, automotive, medical devices, and industrial applications.  Traditional materials continue to dominate the market, with thermal greases and gap fillers representing approximately 45-50% of current applications. However, advanced materials including phase change compounds, graphene-enhanced products, and novel composites are gaining significant market share, particularly in high-performance applications. The liquid metal segment, while smaller, shows rapid growth in premium applications where thermal performance is critical.

The Global Thermal Interface Materials Market 2025-2035 analyzes the global thermal interface materials (TIMs) industry, providing detailed insights into market trends, technological developments, and growth opportunities from 2025 to 2035. The report examines the crucial role of thermal interface materials in managing heat dissipation across various industries, including consumer electronics, electric vehicles, data centers, aerospace & defense, and emerging technology sectors. The study provides in-depth analysis of various TIM types, including thermal greases, gap fillers, phase change materials, metal-based TIMs, and emerging technologies such as graphene-enhanced compounds and carbon nanotubes. A detailed examination of material properties, performance characteristics, and application-specific requirements offers valuable insights for industry stakeholders.

Report contents include: 

  • Key market segments covered include consumer electronics, where increasing device miniaturization drives demand for advanced thermal management solutions; electric vehicles, where battery thermal management and power electronics create new opportunities; and data centers, where growing computing demands necessitate improved cooling solutions.
  • Emerging applications in 5G infrastructure, ADAS sensors, and medical electronics.
  • Carbon-based TIMs, metamaterials, and self-healing compounds.
  • Supply chain analysis
  • Price analysis of both raw materials and finished products.
  • Market forecasts for all major segments, with detailed breakdowns by material type, application, and geographic region. The analysis includes market size projections, growth rates, and emerging opportunities across different end-use sectors.
  • Detailed profiles of 111 companies active in the thermal interface materials market, from established global manufacturers to innovative technology startups. Each profile includes company overview, product portfolio, technological capabilities, and strategic developments. Companies profiled include 3M, ADA Technologies, AI Technology Inc., Aismalibar S.A., Alpha Assembly, AOK Technologies, AOS Thermal Compounds LLC, Arkema, Arieca Inc., ATP Adhesive Systems AG, Aztrong Inc., Bando Chemical Industries Ltd., BestGraphene, BNNano, BNNT LLC, Boyd Corporation, BYK, Cambridge Nanotherm, Carbice Corp., Carbon Waters, Carbodeon Ltd. Oy, CondAlign AS, Denka Company Limited, Detakta Isolier- und Messtechnik GmbH & Co. KG, Dexerials Corporation, Deyang Carbonene Technology, Dow Corning, Dupont (Laird Performance Materials), Dymax Corporation, Dynex Semiconductor (CRRC), ELANTAS Europe GmbH, Elkem Silcones, Enerdyne Thermal Solutions Inc., Epoxies Etc., First Graphene Ltd, Fujipoly, Fujitsu Laboratories, GCS Thermal, GLPOLY, Global Graphene Group, Goodfellow Corporation, Graphmatech AB, GuangDong KingBali New Material Co. Ltd., HALA Contec GmbH & Co. KG, Hamamatsu Carbonics Corporation, H.B. Fuller Company, Henkel AG & Co. KGAA, Hitek Electronic Materials, Honeywell, Hongfucheng New Materials, Huber Martinswerk, HyMet Thermal Interfaces SIA, Indium Corporation, Inkron, KB Element, Kerafol Keramische Folien GmbH & Co. KG, Kitagawa, KULR Technology Group Inc., Kyocera, Leader Tech Inc., LiSAT, LiquidCool Solutions, Liquid Wire Inc., MacDermid Alpha, MG Chemicals Ltd, Minoru Co. Ltd., Mithras Technology AG, Molecular Rebar Design LLC, Momentive Performance Materials, Morion NanoTech, Nanoramic Laboratories, Nano Tim, NeoGraf Solutions LLC, Nitronix, Nolato Silikonteknik, NovoLinc and more.
  • Technical specifications and performance metrics for various TIM types, enabling comparison of different solutions for specific applications. 

 

1             INTRODUCTION          18

  • 1.1        Thermal management-active and passive 18
  • 1.2        What are thermal interface materials (TIMs)?          18
    • 1.2.1    Types   20
    • 1.2.2    Thermal conductivity                21
  • 1.3        Comparative properties of TIMs        22
  • 1.4        Differences between thermal pads and grease       23
  • 1.5        Advantages and disadvantages of TIMs, by type     24
  • 1.6        Performance  26
  • 1.7        Prices  27
  • 1.8        Emerging Technologies in TIMs          28
  • 1.9        Supply Chain for TIMs              28
  • 1.10     Raw Material Analysis and Pricing   29
  • 1.11     Environmental Regulations and Sustainability        30

 

2             MATERIALS      31

  • 2.1        Advanced and Multi-Functional TIMs            32
  • 2.2        TIM fillers          32
    • 2.2.1    Trends 33
    • 2.2.2    Pros and Cons              34
    • 2.2.3    Thermal Conductivity               34
    • 2.2.4    Spherical Alumina      35
    • 2.2.5    Alumina Fillers              35
    • 2.2.6    Boron nitride (BN)       36
    • 2.2.7    Filler and polymer TIMs           38
    • 2.2.8    Filler Sizes        39
  • 2.3        Thermal greases and pastes                40
    • 2.3.1    Overview and properties        40
    • 2.3.2    SWOT analysis              44
  • 2.4        Thermal gap pads       45
    • 2.4.1    Overview and properties        45
    • 2.4.2    SWOT analysis              46
  • 2.5        Thermal gap fillers      47
    • 2.5.1    Overview and properties        47
    • 2.5.2    SWOT analysis              48
  • 2.6        Potting compounds/encapsulants  49
    • 2.6.1    Overview and properties        49
    • 2.6.2    SWOT analysis              51
  • 2.7        Adhesive Tapes             52
    • 2.7.1    Overview and properties        52
    • 2.7.2    SWOT analysis              54
  • 2.8        Phase Change Materials         55
    • 2.8.1    Overview and properties        56
    • 2.8.2    Types   57
      • 2.8.2.1 Organic/biobased phase change materials               58
        • 2.8.2.1.1           Advantages and disadvantages        58
        • 2.8.2.1.2           Paraffin wax    59
        • 2.8.2.1.3           Non-Paraffins/Bio-based      59
      • 2.8.2.2 Inorganic phase change materials   60
        • 2.8.2.2.1           Salt hydrates  60
          • 2.8.2.2.1.1      Advantages and disadvantages        61
        • 2.8.2.2.2           Metal and metal alloy PCMs (High-temperature)   61
      • 2.8.2.3 Eutectic mixtures        61
      • 2.8.2.4 Encapsulation of PCMs           62
        • 2.8.2.4.1           Macroencapsulation 62
        • 2.8.2.4.2           Micro/nanoencapsulation    62
      • 2.8.2.5 Nanomaterial phase change materials         63
    • 2.8.3    Thermal energy storage (TES)              63
      • 2.8.3.1 Sensible heat storage              63
      • 2.8.3.2 Latent heat storage    64
    • 2.8.4    Application in TIMs    64
      • 2.8.4.1 Thermal pads 65
      • 2.8.4.2 Low Melting Alloys (LMAs)    66
    • 2.8.5    SWOT analysis              66
  • 2.9        Metal-based TIMs       67
    • 2.9.1    Overview           67
    • 2.9.2    Solders and low melting temperature alloy TIMs   68
      • 2.9.2.1 Solder TIM1     69
      • 2.9.2.2 Sintering            71
      • 2.9.3    Liquid metals 72
    • 2.9.4    Solid liquid hybrid (SLH) metals        73
      • 2.9.4.1 Hybrid liquid metal pastes    73
      • 2.9.4.2 SLH created during chip assembly (m2TIMs)           74
      • 2.9.4.3 Die-attach materials 75
        • 2.9.4.3.1           Solder Alloys and Conductive Adhesives    77
        • 2.9.4.3.2           Silver-Sintered Paste 79
        • 2.9.4.3.3           Copper (Cu) sintered TIMs    80
          • 2.9.4.3.3.1      TIM1 - Sintered Copper            80
          • 2.9.4.3.3.2      Cu Sinter Materials    80
        • 2.9.4.3.4           Sintered Copper Die-Bonding Paste               82
        • 2.9.4.3.5           Graphene Enhanced Sintered Copper TIMs              83
    • 2.9.5    SWOT analysis              84
  • 2.10     Carbon-based TIMs   85
    • 2.10.1 Carbon nanotube (CNT) TIM Fabrication     85
    • 2.10.2 Multi-walled nanotubes (MWCNT)  85
      • 2.10.2.1            Properties         86
      • 2.10.2.2            Application as thermal interface materials                87
    • 2.10.3 Single-walled carbon nanotubes (SWCNTs)             87
      • 2.10.3.1            Properties         88
      • 2.10.3.2            Application as thermal interface materials                90
    • 2.10.4 Vertically aligned CNTs (VACNTs)     90
      • 2.10.4.1            Properties         90
      • 2.10.4.2            Applications   90
      • 2.10.4.3            Application as thermal interface materials                91
    • 2.10.5 BN nanotubes (BNNT) and nanosheets (BNNS)      92
      • 2.10.5.1            Properties         92
      • 2.10.5.2            Application as thermal interface materials                92
    • 2.10.6 Graphene         93
      • 2.10.6.1            Properties         93
      • 2.10.6.2            Application as thermal interface materials                95
        • 2.10.6.2.1        Graphene fillers            95
        • 2.10.6.2.2        Graphene foam            95
        • 2.10.6.2.3        Graphene aerogel       95
        • 2.10.6.2.4        Graphene Heat Spreaders     96
        • 2.10.6.2.5        Graphene in Thermal Interface Pads              96
    • 2.10.7 Nanodiamonds            96
      • 2.10.7.1            Properties         96
      • 2.10.7.2            Application as thermal interface materials                98
    • 2.10.8 Graphite            98
    • 2.10.8.1            Properties         98
      • 2.10.8.2            Natural graphite           98
        • 2.10.8.2.1        Classification 99
        • 2.10.8.2.2        Processing       100
        • 2.10.8.2.3        Flake    100
          • 2.10.8.2.3.1   Grades               101
          • 2.10.8.2.3.2   Applications   101
      • 2.10.8.3            Synthetic graphite      103
        • 2.10.8.3.1        Classification 103
          • 2.10.8.3.1.1   Primary synthetic graphite    103
          • 2.10.8.3.1.2   Secondary synthetic graphite             104
          • 2.10.8.3.1.3   Processing       104
      • 2.10.8.4            Applications as thermal interface materials             104
        • 2.10.8.4.1        Graphite Sheets           105
        • 2.10.8.4.2        Vertical graphite          105
        • 2.10.8.4.3        Graphite pastes           106
    • 2.10.9 Hexagonal Boron Nitride        106
      • 2.10.9.1            Properties         107
      • 2.10.9.2            Application as thermal interface materials                108
    • 2.10.10              SWOT analysis              109
  • 2.11     Metamaterials               109
    • 2.11.1 Types and properties 110
      • 2.11.1.1            Electromagnetic metamaterials       111
        • 2.11.1.1.1        Double negative (DNG) metamaterials         111
        • 2.11.1.1.2        Single negative metamaterials           111
        • 2.11.1.1.3        Electromagnetic bandgap metamaterials (EBG)    111
        • 2.11.1.1.4        Bi-isotropic and bianisotropic metamaterials          112
        • 2.11.1.1.5        Chiral metamaterials                112
        • 2.11.1.1.6        Electromagnetic “Invisibility” cloak 113
      • 2.11.1.2            Terahertz metamaterials        113
      • 2.11.1.3            Photonic metamaterials         113
      • 2.11.1.4            Tunable metamaterials           113
      • 2.11.1.5            Frequency selective surface (FSS) based metamaterials 114
      • 2.11.1.6            Nonlinear metamaterials       114
      • 2.11.1.7            Acoustic metamaterials         114
    • 2.11.2 Application as thermal interface materials                115
  • 2.12     Self-healing thermal interface materials     115
    • 2.12.1 Extrinsic self-healing 116
    • 2.12.2 Capsule-based             116
    • 2.12.3 Vascular self-healing 116
    • 2.12.4 Intrinsic self-healing 117
    • 2.12.5 Healing volume            117
    • 2.12.6 Types of self-healing materials, polymers and coatings    118
    • 2.12.7 Applications in thermal interface materials              119
  • 2.13     TIM Dispensing             119
    • 2.13.1 Low-volume Dispensing Methods    120
    • 2.13.2 High-volume Dispensing Methods  120
    • 2.13.3 Meter, Mix, Dispense (MMD) Systems           121
    • 2.13.4 TIM Dispensing Equipment Suppliers            121

 

3             MARKETS FOR THERMAL INTERFACE MATERIALS (TIMs)  124

  • 3.1        Consumer electronics             124
    • 3.1.1    Market overview           124
      • 3.1.1.1 Market drivers                124
      • 3.1.1.2 Applications   125
        • 3.1.1.2.1           Smartphones and tablets      125
        • 3.1.1.2.2           Wearable electronics                128
    • 3.1.2    Global market 2022-2035, by TIM type          130
  • 3.2        Electric Vehicles (EV)               131
    • 3.2.1    Market overview           131
      • 3.2.1.1 Market drivers                131
      • 3.2.1.2 Applications   131
        • 3.2.1.2.1           Lithium-ion batteries 132
          • 3.2.1.2.1.1      Cell-to-pack designs 133
          • 3.2.1.2.1.2      Cell-to-chassis/body                134
        • 3.2.1.2.2           Power electronics       135
          • 3.2.1.2.2.1      Types   135
          • 3.2.1.2.2.2      Properties for EV power electronics                135
          • 3.2.1.2.2.3      TIM2 in SiC MOSFET  139
        • 3.2.1.2.3           Charging stations        139
    • 3.2.2    Global market 2022-2035, by TIM type          140
  • 3.3        Data Centers  142
    • 3.3.1    Market overview           142
      • 3.3.1.1 Market drivers                142
      • 3.3.1.2 Applications   143
        • 3.3.1.2.1           Router, switches and line cards         143
          • 3.3.1.2.1.1      Transceivers   144
          • 3.3.1.2.1.2      Server Boards                145
          • 3.3.1.2.1.3      Switches and Routers              145
        • 3.3.1.2.2           Servers               146
        • 3.3.1.2.3           Power supply converters        146
    • 3.3.2    Global market 2022-2035, by TIM type          149
  • 3.4        ADAS Sensors               151
    • 3.4.1    Market overview           151
      • 3.4.1.1 Market drivers                151
      • 3.4.1.2 Applications   151
        • 3.4.1.2.1           ADAS Cameras             152
          • 3.4.1.2.1.1      Commercial examples            152
        • 3.4.1.2.2           ADAS Radar    153
          • 3.4.1.2.2.1      Radar technology        153
          • 3.4.1.2.2.2      Radar boards 154
          • 3.4.1.2.2.3      Commercial examples            154
        • 3.4.1.2.3           ADAS LiDAR    155
          • 3.4.1.2.3.1      Role of TIMs    155
          • 3.4.1.2.3.2      Commercial examples            156
        • 3.4.1.2.4           Electronic control units (ECUs) and computers      157
          • 3.4.1.2.4.1      Commercial examples            157
        • 3.4.1.2.5           Die attach materials  159
        • 3.4.1.2.6           Commercial examples            159
    • 3.4.2    Global market 2022-2035, by TIM type          161
  • 3.5        EMI shielding 163
    • 3.5.1    Market overview           163
      • 3.5.1.1 Market drivers                163
      • 3.5.1.2 Applications   163
        • 3.5.1.2.1           Dielectric Constant   164
        • 3.5.1.2.2           ADAS   164
          • 3.5.1.2.2.1      Radar  165
          • 3.5.1.2.2.2      5G         165
      • 3.5.1.2.3           Commercial examples            166
  • 3.6        5G         167
    • 3.6.1    Market overview           167
      • 3.6.1.1 Market drivers                167
      • 3.6.1.2 Applications   167
        • 3.6.1.2.1           EMI shielding and EMI gaskets           168
        • 3.6.1.2.2           Antenna            168
        • 3.6.1.2.3           Base Band Unit (BBU)              171
        • 3.6.1.2.4           Liquid TIMs      174
        • 3.6.1.2.5           Power supplies             174
          • 3.6.1.2.5.1      Increased power consumption in 5G             175
    • 3.6.2    Market players               176
    • 3.6.3    Global market 2022-2035, by TIM type          176
  • 3.7        Aerospace & Defense               178
    • 3.7.1    Market overview           178
      • 3.7.1.1 Market drivers                178
      • 3.7.1.2 Applications   178
        • 3.7.1.2.1           Satellite thermal management          178
        • 3.7.1.2.2           Avionics cooling           179
        • 3.7.1.2.3           Military electronics     179
    • 3.7.1.3 Global market 2022-2035, by TIM type          179
  • 3.8        Industrial Electronics               180
    • 3.8.1    Market overview           180
      • 3.8.1.1 Market drivers                180
      • 3.8.1.2 Applications   180
        • 3.8.1.2.1           Industrial automation              180
        • 3.8.1.2.2           Power supplies             181
        • 3.8.1.2.3           Motor drives    181
        • 3.8.1.2.4           LED lighting     181
    • 3.8.2    Global market 2022-2035, by TIM type          181
  • 3.9        Renewable Energy      182
    • 3.9.1    Market overview           182
      • 3.9.1.1 Market drivers                182
      • 3.9.1.2 Applications   182
        • 3.9.1.2.1           Solar inverters               182
        • 3.9.1.2.2           Wind power electronics          183
        • 3.9.1.2.3           Energy storage systems          183
    • 3.9.2    Global market 2022-2035, by TIM type          183
  • 3.10     Medical Electronics   184
    • 3.10.1 Market overview           184
      • 3.10.1.1            Market drivers                184
      • 3.10.1.2            Applications   184
        • 3.10.1.2.1        Diagnostic equipment             184
        • 3.10.1.2.2        Medical imaging systems      185
        • 3.10.1.2.3        Patient monitoring devices   185
    • 3.10.2 Global market 2022-2035, by TIM type          185

 

4             COMPANY PROFILES                186 (11 company profiles)

 

5             RESEARCH METHODOLOGY              264

 

6             REFERENCES 265

 

List of Tables

  • Table 1. Thermal conductivities (κ) of common metallic, carbon, and ceramic fillers employed in TIMs.                21
  • Table 2. Commercial TIMs and their properties.     22
  • Table 3. Advantages and disadvantages of TIMs, by type. 24
  • Table 4. Key Factors in System Level Performance for TIMs.          26
  • Table 5. Thermal interface materials prices.             27
  • Table 6. Comparisons of Price and Thermal Conductivity for TIMs.           27
  • Table 7. Price Comparison of TIM Fillers.     27
  • Table 8. Raw Material Analysis and Pricing.               29
  • Table 9. Characteristics of some typical TIMs.        31
  • Table 10. Trends on TIM Fillers.          33
  • Table 11. Pros and Cons of TIM Fillers.          34
  • Table 12. Commercial thermal paste products.     42
  • Table 13.Commercial thermal gap pads (thermal interface materials).  45
  • Table 14. Commercial thermal gap fillers products.            47
  • Table 15. Types of Potting Compounds/Encapsulants.     50
  • Table 16. TIM adhesives tapes.          53
  • Table 17. Commercial phase change materials (PCM) thermal interface materials (TIMs) products. 55
  • Table 18. Properties of PCMs.             56
  • Table 19.  PCM Types and properties.            58
  • Table 20. Advantages and disadvantages of organic PCMs.           58
  • Table 21. Advantages and disadvantages of organic PCM Fatty Acids.    60
  • Table 22. Advantages and disadvantages of salt hydrates               61
  • Table 23. Advantages and disadvantages of low melting point metals.   61
  • Table 24. Advantages and disadvantages of eutectics.      62
  • Table 25. Benefits and drawbacks of PCMs in TIMs.            64
  • Table 26. Comparison of Carbon-based TIMs.        85
  • Table 27. Properties of CNTs and comparable materials. 86
  • Table 28. Typical properties of SWCNT and MWCNT.          88
  • Table 29. Comparison of carbon-based additives in terms of the main parameters influencing their value proposition as a conductive additive.              89
  • Table 30. Thermal conductivity of CNT-based polymer composites.        91
  • Table 31. Comparative properties of BNNTs and CNTs.     92
  • Table 32. Properties of graphene, properties of competing materials, applications thereof.     93
  • Table 33. Properties of nanodiamonds.       97
  • Table 34. Comparison between Natural and Synthetic Graphite.               98
  • Table 35. Classification of natural graphite with its characteristics.         99
  • Table 36. Characteristics of synthetic graphite.      103
  • Table 37. Thermal Conductivity Comparison of Graphite TIMs.   106
  • Table 38. Properties of hexagonal boron nitride (h-BN).    108
  • Table 39. Comparison of self-healing systems.      117
  • Table 40. Types of self-healing coatings and materials.     118
  • Table 41. Comparative properties of self-healing materials.          119
  • Table 42. Challenges for Dispensing TIM.   119
  • Table 43. Thermal Management Application Areas in Consumer Electronics.    124
  • Table 44. Trends in Smartphone Thermal Materials.            125
  • Table 45. Thermal Management approaches in commercial Smartphones.        127
  • Table 46. Global market in consumer electronics 2022-2035, by TIM type (millions USD).        130
  • Table 47. Global market in electric vehicles 2022-2035, by TIM type (millions USD).     140
  • Table 48. TIM Trends in Data Centers.            148
  • Table 49. TIM Area Forecast in Server Boards: 2022-2035 (m2).  148
  • Table 50. Global market in data centers 2022-2035, by TIM type (millions USD).             149
  • Table 51. TIM Players in ADAS.            151
  • Table 52. Die Attach for ADAS Sensors.        160
  • Table 53. Die Attach Area Forecast for Key Components Within ADAS Sensors: 2022-2035 (m2).       160
  • Table 54. Global market in ADAS sensors 2022-2035, by TIM type (millions USD).          161
  • Table 55. TIM Area Forecast for 5G Antennas by Station Size: 2022-2035 (m2). 170
  • Table 56. TIM Area Forecast for 5G Antennas by Station Frequency: 2022-2035 (m2). 170
  • Table 57. TIMS in BBU.             171
  • Table 58. 5G BBY models.      173
  • Table 59. TIM Area Forecast for 5G BBU: 2022-2035 (m2).              173
  • Table 60. Power Consumption Forecast for 5G: 2022-2035 (GW).             175
  • Table 61. TIM Area Forecast for Power Supplies: 2022-2035 (m2).            175
  • Table 62. TIM market players in 5G. 176
  • Table 63. Global market in 5G 2022-2035, by TIM type (millions USD).   176
  • Table 64. Market Drivers for TIMS in aerospace and defense.        178
  • Table 65. Applications for TIMS in aerospace and defense.            178
  • Table 66. Global Market for TIMs in aerospace and defense 2022-2035, by TIM Type (Millions USD). 179
  • Table 67. Market Drivers for TIMs in industrial electronics.              180
  • Table 68. Applications for TIMs in industrial electronics.  180
  • Table 69. Global Market 2022-2035, by TIM Type in Industrial Electronics (Millions USD).         181
  • Table 70. Market Drivers for TIMs in renewable energy.      182
  • Table 71. Applications for TIMs in renewable energy.           182
  • Table 72. Global Market for TIMs in Renewable Energy 2022-2035 (Millions USD).         183
  • Table 73. Market Drivers for TIMs in medical electronics. 184
  • Table 74. Applications for TIMs in medical electronics.     184
  • Table 75. Global Market 2022-2035 for TIMs in Medical Electronics (Millions USD).      185

 

List of Figures

  • Figure 1. (L-R) Surface of a commercial heatsink surface at progressively higher magnifications, showing tool marks that create a rough surface and a need for a thermal interface material. 19
  • Figure 2. Schematic of thermal interface materials used in a flip chip package.              20
  • Figure 3. Thermal grease.      20
  • Figure 4. Dispensing a bead of silicone-based gap filler onto the heat sink of a power electronics module.             21
  • Figure 5. Supply Chain for TIMs.        29
  • Figure 6. Commercial thermal paste products.      41
  • Figure 7. Application of thermal silicone grease.   41
  • Figure 8. A range of thermal grease products.          42
  • Figure 9. SWOT analysis for thermal greases and pastes. 45
  • Figure 10. Thermal Pad.          45
  • Figure 11. SWOT analysis for thermal gap pads.    47
  • Figure 12. Dispensing a bead of silicone-based gap filler onto the heat sink of a power electronics module.             47
  • Figure 13. SWOT analysis for thermal gap fillers.   49
  • Figure 14. SWOT analysis for Potting compounds/encapsulants.              52
  • Figure 15. Thermal adhesive products.         53
  • Figure 16. SWOT analysis for TIM adhesives tapes.              54
  • Figure 17. Phase-change TIM products.       55
  • Figure 18. PCM mode of operation. 57
  • Figure 19. Classification of PCMs.   57
  • Figure 20. Phase-change materials in their original states.             57
  • Figure 21. Thermal energy storage materials.           63
  • Figure 22. Phase Change Material transient behaviour.     64
  • Figure 23. PCM TIMs. 65
  • Figure 24. Phase Change Material - die cut pads ready for assembly.      66
  • Figure 25. SWOT analysis for phase change materials.      67
  • Figure 26. Typical IC package construction identifying TIM1 and TIM2    68
  • Figure 27. Liquid metal TIM product.              73
  • Figure 28. Pre-mixed SLH.     74
  • Figure 29. HLM paste and Liquid Metal Before and After Thermal Cycling.           74
  • Figure 30.  SLH with Solid Solder Preform. 75
  • Figure 31. Automated process for SLH with solid solder preforms and liquid metal.     75
  • Figure 32. SWOT analysis for metal-based TIMs.   84
  • Figure 33. Schematic diagram of a multi-walled carbon nanotube (MWCNT).   86
  • Figure 34. Schematic of single-walled carbon nanotube. 87
  • Figure 35. Types of single-walled carbon nanotubes.         89
  • Figure 36. Schematic of a vertically aligned carbon nanotube (VACNT) membrane used for water treatment.        91
  • Figure 37. Schematic of Boron Nitride nanotubes (BNNTs). Alternating B and N atoms are shown in blue and red.             92
  • Figure 38. Graphene layer structure schematic.     93
  • Figure 39. Illustrative procedure of the Scotch-tape based micromechanical cleavage of HOPG.       93
  • Figure 40. Graphene and its descendants: top right: graphene; top left: graphite = stacked graphene; bottom right: nanotube=rolled graphene; bottom left: fullerene=wrapped graphene. 95
  • Figure 41. Flake graphite.       100
  • Figure 42. Applications of flake graphite.    102
  • Figure 43. Graphite-based TIM products.    105
  • Figure 44. Structure of hexagonal boron nitride.     107
  • Figure 45. SWOT analysis for carbon-based TIMs. 109
  • Figure 46. Classification of metamaterials based on functionalities.      110
  • Figure 47. Electromagnetic metamaterial. 111
  • Figure 48. Schematic of Electromagnetic Band Gap (EBG) structure.      112
  • Figure 49. Schematic of chiral metamaterials.        113
  • Figure 50. Nonlinear metamaterials- 400-nm thick nonlinear mirror that reflects frequency-doubled output using input light intensity as small as that of a laser pointer.         114
  • Figure 51. Schematic of self-healing polymers. Capsule based (a), vascular (b), and intrinsic (c) schemes for self-healing materials.  Red and blue colours indicate chemical species which react (purple) to heal damage.       115
  • Figure 52. Stages of self-healing mechanism.         116
  • Figure 53. Self-healing mechanism in vascular self-healing systems.     117
  • Figure 54. Schematic of TIM operation in electronic devices.        125
  • Figure 55. Schematic of Thermal Management Materials in smartphone.            127
  • Figure 56. Wearable technology inventions.             129
  • Figure 57. Global market in consumer electronics 2022-2035, by TIM type (millions USD).      130
  • Figure 58. Application of thermal interface materials in automobiles.    131
  • Figure 59. EV battery components including TIMs.               133
  • Figure 60. Battery pack with a cell-to-pack design and prismatic cells.  134
  • Figure 61. Cell-to-chassis battery pack.      134
  • Figure 62. TIMS in EV charging station.         139
  • Figure 63. Global market in electric vehicles 2022-2035, by TIM type (millions USD).   141
  • Figure 64. Image of data center layout.         143
  • Figure 65. Application of TIMs in line card. 144
  • Figure 66. Global market in data centers 2022-2035, by TIM type (millions USD).           150
  • Figure 67. ADAS radar unit incorporating TIMs.       154
  • Figure 68. Global market in ADAS sensors 2022-2035, by TIM type (millions USD).        162
  • Figure 69. Coolzorb 5G.          163
  • Figure 70. TIMs in Base Band Unit (BBU).    172
  • Figure 71. Global market in 5G 2022-2035, by TIM type (millions USD). 177
  • Figure 72. Boron Nitride Nanotubes products.        195
  • Figure 73. Transtherm® PCMs.            195
  • Figure 74. Carbice carbon nanotubes.         198
  • Figure 75.  Internal structure of carbon nanotube adhesive sheet.            213
  • Figure 76. Carbon nanotube adhesive sheet.           213
  • Figure 77. HI-FLOW Phase Change Materials.         220
  • Figure 78. Thermoelectric foil, consists of a sequence of semiconductor elements connected with conductive metal. At the top (in red) is the thermal interface.       232
  • Figure 79. Parker Chomerics THERM-A-GAP GEL. 242
  • Figure 80. Metamaterial structure used to control thermal emission.     243
  • Figure 81. Shinko Carbon Nanotube TIM product. 252
  • Figure 82. The Sixth Element graphene products.  256
  • Figure 83. Thermal conductive graphene film.         257
  • Figure 84. VB Series of TIMS from Zeon.       262

 

 

 

The Global Thermal Interface Materials (TIMs) Market 2025-2035
The Global Thermal Interface Materials (TIMs) Market 2025-2035
PDF download/by email.

The Global Thermal Interface Materials (TIMs) Market 2025-2035
The Global Thermal Interface Materials (TIMs) Market 2025-2035
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com